

Edexcel AS Physics: Waves and Particle Nature of Light – Calculation Practice

Praneel Physics

1. A wave has a frequency of 500 Hz and a wavelength of 0.6 m. Calculate the speed of the wave. (P)

Working and Answer:

Using the wave equation $v = f\lambda$, where v is the speed, f is the frequency, and λ is the wavelength.

Substituting the values: $v = 500 \text{ Hz} \times 0.6 \text{ m} = 300 \text{ m/s}$.

Answer: 300 m/s

2. A sound wave travels at a speed of 340 m/s. If its frequency is 170 Hz, what is its wavelength? (P)

Working and Answer:

Using the wave equation $\lambda = \frac{v}{f}$.

Substituting the values: $\lambda = \frac{340 \text{ m/s}}{170 \text{ Hz}} = 2 \text{ m}$.

Answer: 2 m

3. Calculate the frequency of a wave with a wavelength of 2 m that travels at a speed of 10 m/s. (P)

Working and Answer:

Using the wave equation $f = \frac{v}{\lambda}$.

Substituting the values: $f = \frac{10 \text{ m/s}}{2 \text{ m}} = 5 \text{ Hz}$.

Answer: 5 Hz

4. A light wave has a frequency of 6×10^{14} Hz. Calculate its wavelength in a vacuum. (Use $c = 3 \times 10^8$ m/s) (P)

Working and Answer:

Using the wave equation $\lambda = \frac{c}{f}$.

Substituting the values: $\lambda = \frac{3 \times 10^8 \text{ m/s}}{6 \times 10^{14} \text{ Hz}} = 5 \times 10^{-7} \text{ m}$.

Answer: 5×10^{-7} m

5. A wave has a speed of 1500 m/s and a wavelength of 0.75 m. What is its frequency? (P)

Working and Answer:

Using the wave equation $f = \frac{v}{\lambda}$.

Substituting the values: $f = \frac{1500 \text{ m/s}}{0.75 \text{ m}} = 2000 \text{ Hz}$.

Answer: 2000 Hz

6. A sound wave has a frequency of 440 Hz and travels through air at 343 m/s. Calculate its wavelength. (PP)

Working and Answer:

Using the wave equation $\lambda = \frac{v}{f}$.

Substituting the values: $\lambda = \frac{343 \text{ m/s}}{440 \text{ Hz}} \approx 0.780 \text{ m.}$

Answer: 0.780 m

7. Calculate the energy of a photon with a frequency of 5×10^{14} Hz. (Use $E = hf$ and $h = 6.63 \times 10^{-34}$ J s) (PP)

Working and Answer:

Using the equation $E = hf$.

Substituting the values:

$$E = (6.63 \times 10^{-34} \text{ J s}) \times (5 \times 10^{14} \text{ Hz}) = 3.315 \times 10^{-19} \text{ J.}$$

Answer: 3.315×10^{-19} J

8. A light wave has a wavelength of 400 nm. Calculate its frequency. (Use $c = 3 \times 10^8$ m/s)
(PP)

Working and Answer:

First, convert 400 nm to meters: $400 \text{ nm} = 400 \times 10^{-9} \text{ m}$.

Using the wave equation $f = \frac{c}{\lambda}$.

Substituting the values: $f = \frac{3 \times 10^8 \text{ m/s}}{400 \times 10^{-9} \text{ m}} = 7.5 \times 10^{14} \text{ Hz}$.

Answer: $7.5 \times 10^{14} \text{ Hz}$

9. A photon has an energy of 2.48×10^{-19} J. Calculate its frequency. (Use $h = 6.63 \times 10^{-34}$ J s) (PP)

Working and Answer:

Using the equation $f = \frac{E}{h}$.

Substituting the values: $f = \frac{2.48 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{ J s}} \approx 3.74 \times 10^{14} \text{ Hz}$.

Answer: 3.74×10^{14} Hz

10. A wave has a frequency of 60 Hz and a wavelength of 1.5 m. Calculate its speed. (PP)

Working and Answer:

Using the wave equation $v = f\lambda$.

Substituting the values: $v = 60 \text{ Hz} \times 1.5 \text{ m} = 90 \text{ m/s}$.

Answer: 90 m/s

11. A laser emits light with a wavelength of 650 nm. Calculate the energy of one photon of this light. (PPP)

Working and Answer:

First, convert 650 nm to meters: $650 \text{ nm} = 650 \times 10^{-9} \text{ m}$.

Using the wave equation to find frequency:

$$f = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m/s}}{650 \times 10^{-9} \text{ m}} \approx 4.615 \times 10^{14} \text{ Hz.}$$

Now, using $E = hf$: $E = (6.63 \times 10^{-34} \text{ J s}) \times (4.615 \times 10^{14} \text{ Hz}) \approx 3.06 \times 10^{-19} \text{ J.}$

Answer: $3.06 \times 10^{-19} \text{ J}$

12. A wave travels at a speed of 250 m/s and has a frequency of 50 Hz. What is its wavelength?
(PPP)

Working and Answer:

Using the wave equation $\lambda = \frac{v}{f}$.

Substituting the values: $\lambda = \frac{250 \text{ m/s}}{50 \text{ Hz}} = 5 \text{ m.}$

Answer: 5 m

13. Calculate the wavelength of a photon with an energy of 1.24×10^{-19} J. (Use $h = 6.63 \times 10^{-34}$ J s) (PPP)

Working and Answer:

Using the equation $E = hf$ to find frequency:

$$f = \frac{E}{h} = \frac{1.24 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{ J s}} \approx 1.87 \times 10^{14} \text{ Hz.}$$

Now, using $\lambda = \frac{c}{f}$: $\lambda = \frac{3 \times 10^8 \text{ m/s}}{1.87 \times 10^{14} \text{ Hz}} \approx 1.60 \times 10^{-6} \text{ m.}$

Answer: $1.60 \times 10^{-6} \text{ m}$

14. A sound wave has a speed of 340 m/s and a wavelength of 0.85 m. Calculate its frequency.
(PPP)

Working and Answer:

Using the wave equation $f = \frac{v}{\lambda}$.

Substituting the values: $f = \frac{340 \text{ m/s}}{0.85 \text{ m}} \approx 400 \text{ Hz}$.

Answer: 400 Hz

15. A light wave has a frequency of 3×10^{15} Hz. Calculate its wavelength in a vacuum. (Use $c = 3 \times 10^8$ m/s) (PPP)

Working and Answer:

Using the wave equation $\lambda = \frac{c}{f}$.

Substituting the values: $\lambda = \frac{3 \times 10^8 \text{ m/s}}{3 \times 10^{15} \text{ Hz}} = 1 \times 10^{-7} \text{ m}$.

Answer: $1 \times 10^{-7} \text{ m}$

16. A photon has a frequency of 4.0×10^{14} Hz. Calculate its energy. (Use $h = 6.63 \times 10^{-34}$ J s)
(PPPP)

Working and Answer:

Using the equation $E = hf$.

Substituting the values:

$$E = (6.63 \times 10^{-34} \text{ J s}) \times (4.0 \times 10^{14} \text{ Hz}) = 2.652 \times 10^{-19} \text{ J.}$$

Answer: 2.652×10^{-19} J

17. A wave has a speed of 300 m/s and a frequency of 75 Hz. Calculate its wavelength.
(PPPP)

Working and Answer:

Using the wave equation $\lambda = \frac{v}{f}$.

Substituting the values: $\lambda = \frac{300 \text{ m/s}}{75 \text{ Hz}} = 4 \text{ m.}$

Answer: 4 m

18. A light wave has a wavelength of 500 nm. Calculate its frequency. (Use $c = 3 \times 10^8$ m/s)
(PPPP)

Working and Answer:

First, convert 500 nm to meters: $500 \text{ nm} = 500 \times 10^{-9} \text{ m}$.

Using the wave equation $f = \frac{c}{\lambda}$.

Substituting the values: $f = \frac{3 \times 10^8 \text{ m/s}}{500 \times 10^{-9} \text{ m}} = 6 \times 10^{14} \text{ Hz}$.

Answer: $6 \times 10^{14} \text{ Hz}$

19. A photon has an energy of 3.2×10^{-19} J. Calculate its wavelength. (Use $h = 6.63 \times 10^{-34}$ J s) (PPPP)

Working and Answer:

Using the equation $f = \frac{E}{h}$: $f = \frac{3.2 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{ J s}} \approx 4.82 \times 10^{14} \text{ Hz}$.

Now, using $\lambda = \frac{c}{f}$: $\lambda = \frac{3 \times 10^8 \text{ m/s}}{4.82 \times 10^{14} \text{ Hz}} \approx 6.22 \times 10^{-7} \text{ m}$.

Answer: $6.22 \times 10^{-7} \text{ m}$

20. A sound wave has a frequency of 1000 Hz and a wavelength of 0.34 m. Calculate its speed. (PPP)

Working and Answer:

Using the wave equation $v = f\lambda$.

Substituting the values: $v = 1000 \text{ Hz} \times 0.34 \text{ m} = 340 \text{ m/s}$.

Answer: 340 m/s

21. A light wave has a frequency of 2.5×10^{15} Hz. Calculate its energy. (Use $h = 6.63 \times 10^{-34}$ J s) (PPPPP)

Working and Answer:

Using the equation $E = hf$.

Substituting the values:

$$E = (6.63 \times 10^{-34} \text{ J s}) \times (2.5 \times 10^{15} \text{ Hz}) = 1.6575 \times 10^{-18} \text{ J.}$$

Answer: 1.6575×10^{-18} J

22. A wave has a speed of 500 m/s and a wavelength of 2 m. Calculate its frequency.
(PPPPP)

Working and Answer:

Using the wave equation $f = \frac{v}{\lambda}$.

Substituting the values: $f = \frac{500 \text{ m/s}}{2 \text{ m}} = 250 \text{ Hz}$.

Answer: 250 Hz

23. A photon has a wavelength of 300 nm. Calculate its energy. (Use $h = 6.63 \times 10^{-34}$ J s and $c = 3 \times 10^8$ m/s) (PPPPP)

Working and Answer:

First, convert 300 nm to meters: $300 \text{ nm} = 300 \times 10^{-9} \text{ m}$.

Using the wave equation to find frequency:

$$f = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m/s}}{300 \times 10^{-9} \text{ m}} = 1 \times 10^{15} \text{ Hz.}$$

Now, using $E = hf$: $E = (6.63 \times 10^{-34} \text{ J s}) \times (1 \times 10^{15} \text{ Hz}) = 6.63 \times 10^{-19} \text{ J.}$

Answer: $6.63 \times 10^{-19} \text{ J}$

24. A sound wave travels at a speed of 340 m/s and has a frequency of 680 Hz. Calculate its wavelength. (PPPPP)

Working and Answer:

Using the wave equation $\lambda = \frac{v}{f}$.

Substituting the values: $\lambda = \frac{340 \text{ m/s}}{680 \text{ Hz}} = 0.5 \text{ m}$.

Answer: 0.5 m

25. A light wave has a frequency of 5×10^{14} Hz. Calculate its wavelength in a vacuum. (Use $c = 3 \times 10^8$ m/s) (PPPPP)

Working and Answer:

$$\text{Using the wave equation } \lambda = \frac{c}{f}, \lambda = \frac{3 \times 10^8 \text{ m/s}}{5 \times 10^{14} \text{ Hz}} =$$

6×10^{-7} m. Answer: 6×10^{-7} m